Rotations - Demo 07

Objective

Attempt to rotate the paddles around their center. Learn about rotations. This demo does not work correctly, because of a misunderstanding of how to interpret a sequence of transformations.

Demo 07

Demo 07

How to Execute

Load src/modelviewprojection/demo07.py in Spyder and hit the play button.

Move the Paddles using the Keyboard

Keyboard Input

Action

w

Move Left Paddle Up

s

Move Left Paddle Down

k

Move Right Paddle Down

i

Move Right Paddle Up

d

Increase Left Paddle’s Rotation

a

Decrease Left Paddle’s Rotation

l

Increase Right Paddle’s Rotation

j

Decrease Right Paddle’s Rotation

For another person’s explanation of the trigonometry of rotating in 2D, see

Rotate the Paddles About their Center

Besides translate and scale, the third main operation in computer graphics is to rotate an object.

Rotation Around Origin (0,0)

We can rotate an object around (0,0) by rotating all of the object’s vertices around (0,0).

In high school math, you will have learned about sin, cos, and tangent. Typically the angles are described on the unit circle, where a rotation starts from the positive x axis.

Demo 07

We can expand on this knowledge, allowing us to rotate all vertices, wherever they are, around the origin (0,0), by some angle \(\theta\).

Let’s take any arbitrary point

\[\vec{a}\]
\[\vec{r}(\vec{a}; \theta)\]
rotate-goal

From high school geometry, remember that we can describe a Cartesian (x,y) point by its length r, and its cosine and sine of its angle \(\theta\).

rotate1

Also remember that when calculating sine and cosine, because right triangles are proportional, that sine and cosine are preserved for a right triangle, even if the length sides are scaled up or down.

So we’ll make a right triangle on the unit circle, but we will remember the length of (x,y), which we’ll call “r”, and we’ll call the angle of (x,y) to be “\(\beta\)”. As a reminder, we want to rotate by a different angle, called “\(\theta\)”.

rotate2

Before we can rotate by “\(\theta\)”, first we need to be able to rotate by 90 degrees, or \(\pi\)/2. So to rotate (cos(\(\beta\)), sin(\(\beta\))) by \(\pi\)/2, we get (cos(\(\beta\) + \(\pi\)/2), sin(\(\beta\) + \(\pi\)/2)).

rotate3

Now let’s give each of those vertices new names, x’ and y’, for the purpose of ignoring details for now that we’ll return to later, just let we did for length “r” above.

rotate4

Now forget about “\(\beta\)”, and remember that our goal is to rotate by angle “\(\theta\)”. Look at the picture below, while turning your head slightly to the left. x’ and y’ look just like our normal Cartesian plane and unit circle, combined with the “\(\theta\)”; it looks like what we already know from high school geometry.

rotate5

So with this new frame of reference, we can rotate x’ by “\(\theta\)”, and draw a right triangle on the unit circle using this new frame of reference.

rotate6

So the rotated point can be constructed by the following

\[\vec{r}(\vec{a}; theta) = cos(\theta)*\vec{x'} + sin(\theta)*\vec{y'}\]
rotate7

Now that we’ve found the direction on the unit circle, we remember to make it length “r”.

rotate8

Ok, we are now going to stop thinking about geometry, and we will only be thinking about algebra. Please don’t try to look at the formula and try to draw any diagrams.

Ok, now it is time to remember what the values that x’ and y’ are defined as.

\[\begin{split}\vec{r}(\vec{a}; \theta) & = r*(cos(\theta)*\vec{x'} + sin(\theta)*\vec{y'}) \\ & = r*(cos(\theta)*\begin{bmatrix} cos(\beta) \\ sin(\beta) \\ \end{bmatrix} + sin(\theta)*\begin{bmatrix} cos(\beta + \pi/2) \\ sin(\beta + \pi/2) \\ \end{bmatrix})\end{split}\]

A problem we have now is how to calculate cosine and sine of \(\beta\) + \(\pi\)/2, because we haven’t actually calculated \(\beta\); we’ve calculated sine and cosine of \(\beta\) by dividing the x value by the magnitude of the a, and the sine of \(\beta\) by dividing the y value by the magnitude of a.

\[ \begin{align}\begin{aligned}cos(\theta) = \vec{a}_{x} / r\\sine(\theta) = \vec{a}_{y} / r\end{aligned}\end{align} \]

We could try to take the inverse sine or inverse cosine of theta, but there is no need given properties of trigonometry.

\[ \begin{align}\begin{aligned}cos(\theta + \pi/2) = -sin(\theta)\\sin(\theta + \pi/2) = cos(\theta)\end{aligned}\end{align} \]

Therefore

\[ \begin{align}\begin{aligned}cos(\theta) = \vec{a}_{x} / r\\sin(\theta) = \vec{a}_{y} / r\end{aligned}\end{align} \]
\[ \begin{align}\begin{aligned}\begin{split}\vec{r}(\vec{a}; \theta) & = r*(cos(\theta)*\vec{x'} + sin(\theta)*\vec{y'}) \\ & = r*(cos(\theta)*\begin{bmatrix} cos(\beta) \\ sin(\beta) \\ \end{bmatrix} + sin(\theta)*\begin{bmatrix} cos(\beta + \pi/2) \\ sin(\beta + \pi/2) \\ \end{bmatrix}) \\ & = r*(cos(\theta)*\begin{bmatrix} \vec{a}_{x} / r \\ \vec{a}_{y} / r \\ \end{bmatrix} + sin(\theta)*\begin{bmatrix} -\vec{a}_{y} / r \\ \vec{a}_{x} / r\\ \end{bmatrix}) \\ & = (cos(\theta)*\begin{bmatrix} \vec{a}_{x} \\ \vec{a}_{y} \\ \end{bmatrix} + sin(\theta)*\begin{bmatrix} -\vec{a}_{y} \\ \vec{a}_{x} \\ \end{bmatrix}) \\ & = (cos(\theta)*\vec{a} + sin(\theta)*\begin{bmatrix} -\vec{a}_{y} \\ \vec{a}_{x} \\ \end{bmatrix})\end{split}\\\begin{split}\vec{r}(\vec{a}; \theta) & = \begin{bmatrix} -\vec{a}_{y} \\ \vec{a}_{x} \\ \end{bmatrix} \text{ if } (\theta = \pi/2) \\ & = (cos(\theta)*\vec{a} + sin(\theta)*\vec{r}(\vec{a}; \pi/2 ) \text{ if } (\theta \ne \pi/2)\end{split}\end{aligned}\end{align} \]
src/modelviewprojection/mathutils2d.py
28@dataclass
29class Vector2D:
30    x: float  #: The x-component of the 2D Vector
31    y: float  #: The y-component of the 2D Vector
src/modelviewprojection/mathutils2d.py
156def rotate_90_degrees() -> InvertibleFunction[Vector2D]:
157    def f(vector: Vector2D) -> Vector2D:
158        return Vector2D(-vector.y, vector.x)
159
160    def f_inv(vector: Vector2D) -> Vector2D:
161        return Vector2D(vector.y, -vector.x)
162
163    return InvertibleFunction(f, f_inv)
164
165
166def rotate(angle_in_radians: float) -> InvertibleFunction:
167    r90: InvertibleFunction[Vector2D] = rotate_90_degrees()
168
169    def f(vector: Vector2D) -> Vector2D:
170        parallel: Vector2D = math.cos(angle_in_radians) * vector
171        perpendicular: Vector2D = math.sin(angle_in_radians) * r90(vector)
172        return parallel + perpendicular
173
174    def f_inv(vector: Vector2D) -> Vector2D:
175        parallel: Vector2D = math.cos(angle_in_radians) * vector
176        perpendicular: Vector2D = math.sin(angle_in_radians) * inverse(r90)(
177            vector
178        )
179        return parallel + perpendicular
180
181    return InvertibleFunction(f, f_inv)
182
183
  • Note the definition of rotate, from the description above. cos and sin are defined in the math module.

src/modelviewprojection/demo07.py
113@dataclass
114class Paddle:
115    vertices: list[Vector2D]
116    color: Color3
117    position: Vector2D
118    rotation: float = 0.0
  • a rotation instance variable is defined, with a default value of 0

src/modelviewprojection/demo07.py
146def handle_movement_of_paddles() -> None:
147    global paddle1, paddle2
148
149    if glfw.get_key(window, glfw.KEY_S) == glfw.PRESS:
150        paddle1.position.y -= 1.0
151    if glfw.get_key(window, glfw.KEY_W) == glfw.PRESS:
152        paddle1.position.y += 1.0
153    if glfw.get_key(window, glfw.KEY_K) == glfw.PRESS:
154        paddle2.position.y -= 1.0
155    if glfw.get_key(window, glfw.KEY_I) == glfw.PRESS:
156        paddle2.position.y += 1.0
157
158    if glfw.get_key(window, glfw.KEY_A) == glfw.PRESS:
159        paddle1.rotation += 0.1
160    if glfw.get_key(window, glfw.KEY_D) == glfw.PRESS:
161        paddle1.rotation -= 0.1
162    if glfw.get_key(window, glfw.KEY_J) == glfw.PRESS:
163        paddle2.rotation += 0.1
164    if glfw.get_key(window, glfw.KEY_L) == glfw.PRESS:
165        paddle2.rotation -= 0.1

Cayley Graph

Demo 06

Code

The Event Loop

src/modelviewprojection/demo07.py
174while not glfw.window_should_close(window):

So to rotate paddle 1 about its center, we should translate to its position, and then rotate around the paddle’s center.

src/modelviewprojection/demo07.py
193    glColor3f(*astuple(paddle1.color))
194
195    glBegin(GL_QUADS)
196    for p1_v_ms in paddle1.vertices:
197        # doc-region-begin compose transformations on paddle 1
198        fn: InvertibleFunction[Vector2D] = compose(
199            uniform_scale(1.0 / 10.0),
200            rotate(paddle1.rotation),
201            translate(paddle1.position),
202        )
203        paddle1_vector_ndc: Vector2D = fn(p1_v_ms)
204        # doc-region-end compose transformations on paddle 1
205        glVertex2f(paddle1_vector_ndc.x, paddle1_vector_ndc.y)
206    glEnd()
\[\vec{f}_{p1}^{w}\]
\[\vec{f}_{w}^{ndc}\]
...

Likewise, to rotate paddle 2 about its center, we should translate to its position, and then rotate around the paddle’s center.

src/modelviewprojection/demo07.py
210    glColor3f(*astuple(paddle2.color))
211
212    glBegin(GL_QUADS)
213    for p2_v_ms in paddle2.vertices:
214        fn: InvertibleFunction[Vector2D] = compose(
215            uniform_scale(1.0 / 10.0),
216            rotate(paddle2.rotation),
217            translate(paddle2.position),
218        )
219        paddle2_vector_ndc: Vector2D = fn(p2_v_ms)
220        glVertex2f(paddle2_vector_ndc.x, paddle2_vector_ndc.y)
221    glEnd()
\[\vec{f}_{p2}^{w}\]
\[\vec{f}_{w}^{ndc}\]

Why it is Wrong

Turns out, our program doesn’t work as predicted, even though translate, scale, and rotate are all defined correctly. The paddles are not rotating around their center.

Let’s take a look in detail about what our paddle-space to world space transformations are doing.

src/modelviewprojection/demo07.py
198        fn: InvertibleFunction[Vector2D] = compose(
199            uniform_scale(1.0 / 10.0),
200            rotate(paddle1.rotation),
201            translate(paddle1.position),
202        )
203        paddle1_vector_ndc: Vector2D = fn(p1_v_ms)

See modelviewprojection.mathutils.compose

  • Translate

  • Reset the coordinate system

Modelspace

  • Rotate around World Spaces’s origin

Modelspace

  • Reset the coordinate system

Modelspace

  • Final world space coordinates

Modelspace

So then what the heck are we supposed to do in order to rotate around an object’s center? The next section provides a solution.