Adding Depth - Z axis Demo 14¶
Purpose¶
Do the same stuff as the previous demo, but use 3D coordinates, where the negative z axis goes into the screen (because of the right hand rule). Positive z comes out of the monitor towards your face.
Things that this demo doesn’t end up doing correctly:
The blue square is always drawn, even when its z-coordinate in world space is less than the paddle’s. The solution will be z-buffering https://en.wikipedia.org/wiki/Z-buffering, and it is implemented in the next demo.
How to Execute¶
On Linux or on MacOS, in a shell, type “python src/demo14/demo.py”. On Windows, in a command prompt, type “python src\demo14\demo.py”.
Move the Paddles using the Keyboard¶
Keyboard Input |
Action |
---|---|
w |
Move Left Paddle Up |
s |
Move Left Paddle Down |
k |
Move Right Paddle Down |
i |
Move Right Paddle Up |
d |
Increase Left Paddle’s Rotation |
a |
Decrease Left Paddle’s Rotation |
l |
Increase Right Paddle’s Rotation |
j |
Decrease Right Paddle’s Rotation |
UP |
Move the camera up, moving the objects down |
DOWN |
Move the camera down, moving the objects up |
LEFT |
Move the camera left, moving the objects right |
RIGHT |
Move the camera right, moving the objects left |
q |
Rotate the square around its center |
e |
Rotate the square around paddle 1’s center |
Description¶
Vertex data will now have an X, Y, and Z component.
Rotations around an angle in 3D space follow the right hand rule. Here’s a link to them in matrix form, which we have not yet covered.
With open palm, fingers on the x axis, rotating the fingers to y axis, means that the positive z axis is in the direction of the thumb. Positive Theta moves in the direction that your fingers did.
starting on the y axis, rotating to z axis, thumb is on the positive x axis.
starting on the z axis, rotating to x axis, thumb is on the positive y axis.
109@dataclass
110class Vertex2D:
111 x: float
112 y: float
113
114 def __add__(self, rhs: Vertex2D) -> Vertex2D:
115 return Vertex2D(x=self.x + rhs.x, y=self.y + rhs.y)
116
117 def translate(self: Vertex2D, translate_amount: Vertex2D) -> Vertex2D:
118 return self + translate_amount
119
120 def __mul__(self, scalar: float) -> Vertex2D:
121 return Vertex2D(x=self.x * scalar, y=self.y * scalar)
122
123 def __rmul__(self, scalar: float) -> Vertex2D:
124 return self * scalar
125
126 def uniform_scale(self: Vertex2D, scalar: float) -> Vertex2D:
127 return self * scalar
128
129 def scale(self: Vertex2D, scale_x: float, scale_y: float) -> Vertex2D:
130 return Vertex2D(x=self.x * scale_x, y=self.y * scale_y)
131
132 def __neg__(self):
133 return -1.0 * self
134
135 def rotate_90_degrees(self: Vertex2D):
136 return Vertex2D(x=-self.y, y=self.x)
137
138 def rotate(self: Vertex2D, angle_in_radians: float) -> Vertex2D:
139 return math.cos(angle_in_radians) * self + math.sin(angle_in_radians) * self.rotate_90_degrees()
140
141
142@dataclass
143class Vertex:
144 x: float
145 y: float
146 z: float
147
148 def __add__(self, rhs: Vertex) -> Vertex:
149 return Vertex(x=self.x + rhs.x, y=self.y + rhs.y, z=self.z + rhs.z)
150
151 def translate(self: Vertex, translate_amount: Vertex) -> Vertex:
152 return self + translate_amount
153
Rotate Z¶
Rotate Z is the same rotate that we’ve used so far, but doesn’t affect the z component at all.
171 def rotate_z(self: Vertex, angle_in_radians: float) -> Vertex:
172 xy_on_xy: Vertex2D = Vertex2D(x=self.x, y=self.y).rotate(angle_in_radians)
173 return Vertex(x=xy_on_xy.x, y=xy_on_xy.y, z=self.z)
174
Rotate X¶
157 def rotate_x(self: Vertex, angle_in_radians: float) -> Vertex:
158 yz_on_xy: Vertex2D = Vertex2D(x=self.y, y=self.z).rotate(angle_in_radians)
159 return Vertex(x=self.x, y=yz_on_xy.x, z=yz_on_xy.y)
160
Rotate Y¶
164 def rotate_y(self: Vertex, angle_in_radians: float) -> Vertex:
165 zx_on_xy: Vertex2D = Vertex2D(x=self.z, y=self.x).rotate(angle_in_radians)
166 return Vertex(x=zx_on_xy.y, y=self.y, z=zx_on_xy.y)
167
Scale¶
178
179 def __mul__(self, scalar: float) -> Vertex:
180 return Vertex(x=self.x * scalar, y=self.y * scalar, z=self.z * scalar)
181
182 def __rmul__(self, scalar: float) -> Vertex:
183 return self * scalar
184
185 def uniform_scale(self: Vertex, scalar: float) -> Vertex:
186 return self * scalar
187
188 def scale(self: Vertex, scale_x: float, scale_y: float, scale_z: float) -> Vertex:
189 return Vertex(x=self.x * scale_x, y=self.y * scale_y, z=self.z * scale_z)
190
191 def __neg__(self):
192 return -1.0 * self
193
Code¶
The only new aspect of the code below is that the paddles have a z-coordinate of 0 in their modelspace.
208paddle1: Paddle = Paddle(
209 vertices=[
210 Vertex(x=-1.0, y=-3.0, z=0.0),
211 Vertex(x=1.0, y=-3.0, z=0.0),
212 Vertex(x=1.0, y=3.0, z=0.0),
213 Vertex(x=-1.0, y=3.0, z=0.0),
214 ],
215 r=0.578123,
216 g=0.0,
217 b=1.0,
218 position=Vertex(x=-9.0, y=0.0, z=0.0),
219)
220
221paddle2: Paddle = Paddle(
222 vertices=[
223 Vertex(x=-1.0, y=-3.0, z=0.0),
224 Vertex(x=1.0, y=-3.0, z=0.0),
225 Vertex(x=1.0, y=3.0, z=0.0),
226 Vertex(x=-1.0, y=3.0, z=0.0),
227 ],
228 r=1.0,
229 g=1.0,
230 b=0.0,
231 position=Vertex(x=9.0, y=0.0, z=0.0),
232)
The only new aspect of the square below is that the paddles have a z-coordinate of 0 in their modelspace. N.B that since we do a sequence transformations to the modelspace data to get to world-space coordinates, the X, Y, and Z coordinates are subject to be different.
237@dataclass
238class Camera:
239 position_worldspace: Vertex = field(default_factory=lambda: Vertex(x=0.0, y=0.0, z=0.0))
240
241
242camera: Camera = Camera()
The camera now has a z-coordinate of 0 also.
246square: Paddle = [
247 Vertex(x=-0.5, y=-0.5, z=0.0),
248 Vertex(x=0.5, y=-0.5, z=0.0),
249 Vertex(x=0.5, y=0.5, z=0.0),
250 Vertex(x=-0.5, y=0.5, z=0.0),
251]
Event Loop¶
306while not glfw.window_should_close(window):
...
Draw Paddle 1
324 glColor3f(paddle1.r, paddle1.g, paddle1.b)
325 glBegin(GL_QUADS)
326 for paddle1_vertex_in_model_space in paddle1.vertices:
327 paddle1_vertex_in_world_space: Vertex = paddle1_vertex_in_model_space.rotate_z(paddle1.rotation) \
328 .translate(paddle1.position)
329 paddle1_vertex_in_camera_space: Vertex = paddle1_vertex_in_world_space.translate(-camera.position_worldspace)
330 paddle1_vertex_in_ndc_space: Vertex = paddle1_vertex_in_camera_space.uniform_scale(scalar=1.0 / 10.0)
331 glVertex2f(paddle1_vertex_in_ndc_space.x, paddle1_vertex_in_ndc_space.y)
332 glEnd()
The square should not be visible when hidden behind the paddle1, as we do a translate by -1. But in running the demo, you see that the square is always drawn over the paddle.
Draw the Square
338 # draw square
339 glColor3f(0.0, 0.0, 1.0)
340 glBegin(GL_QUADS)
341 for model_space in square:
342 paddle_1_space: Vertex = model_space.rotate_z(square_rotation) \
343 .translate(Vertex(x=2.0,
344 y=0.0,
345 z=0.0)) \
346 .rotate_z(rotation_around_paddle1) \
347 .translate(Vertex(x=0.0,
348 y=0.0,
349 z=-1.0))
350 world_space: Vertex = paddle_1_space.rotate_z(paddle1.rotation) \
351 .translate(paddle1.position)
352 camera_space: Vertex = world_space.translate(-camera.position_worldspace)
353 ndc_space: Vertex = camera_space.uniform_scale(scalar=1.0 / 10.0)
354 glVertex3f(ndc_space.x, ndc_space.y, ndc_space.z)
355 glEnd()
This is because without depth buffering, the object drawn last clobbers the color of any previously drawn object at the pixel. Try moving the square drawing code to the beginning, and you will see that the square can be hidden behind the paddle.
Draw Paddle 2
361 # draw paddle 2
362 glColor3f(paddle2.r, paddle2.g, paddle2.b)
363 glBegin(GL_QUADS)
364 for paddle2_vertex_model_space in paddle2.vertices:
365 paddle2_vertex_world_space: Vertex = paddle2_vertex_model_space.rotate_z(paddle2.rotation) \
366 .translate(paddle2.position)
367 paddle2_vertex_camera_space: Vertex = paddle2_vertex_world_space.translate(-camera.position_worldspace)
368 paddle2_vertex_ndc_space: Vertex = paddle2_vertex_camera_space.uniform_scale(scalar=1.0 / 10.0)
369 glVertex3f(paddle2_vertex_ndc_space.x, paddle2_vertex_ndc_space.y, paddle2_vertex_ndc_space.z)
370 glEnd()
Added translate in 3D. Added scale in 3D. These are just like the 2D versions, just with the same process applied to the z axis.
They direction of the rotation is defined by the right hand rule.