Adding Depth - Z axis Demo 14

Objective

Do the same stuff as the previous demo, but use 3D coordinates, where the negative z axis goes into the screen (because of the right hand rule). Positive z comes out of the monitor towards your face.

Things that this demo doesn’t end up doing correctly:

  • The blue square is always drawn, even when its z-coordinate in world space is less than the paddle’s. The solution will be z-buffering https://en.wikipedia.org/wiki/Z-buffering, and it is implemented in the next demo.

Demo 14

Demo 14

Camera Space

Camera Space

Camera Space

Camera Space

How to Execute

Load src/modelviewprojection/demo14.py in Spyder and hit the play button.

Move the Paddles using the Keyboard

Keyboard Input

Action

w

Move Left Paddle Up

s

Move Left Paddle Down

k

Move Right Paddle Down

i

Move Right Paddle Up

d

Increase Left Paddle’s Rotation

a

Decrease Left Paddle’s Rotation

l

Increase Right Paddle’s Rotation

j

Decrease Right Paddle’s Rotation

UP

Move the camera up, moving the objects down

DOWN

Move the camera down, moving the objects up

LEFT

Move the camera left, moving the objects right

RIGHT

Move the camera right, moving the objects left

q

Rotate the square around its center

e

Rotate the square around paddle 1’s center

Description

  • Vector data will now have an X, Y, and Z component.

  • Rotations around an angle in 3D space follow the right hand rule. Here’s a link to them in matrix form, which we have not yet covered.

Right hand rule
  • With open palm, fingers on the x axis, rotating the fingers to y axis, means that the positive z axis is in the direction of the thumb. Positive Theta moves in the direction that your fingers did.

  • starting on the y axis, rotating to z axis, thumb is on the positive x axis.

  • starting on the z axis, rotating to x axis, thumb is on the positive y axis.

src/modelviewprojection/mathutils3d
32@dataclass
33class Vector3D:
34    x: float  #: The x-component of the 3D Vector
35    y: float  #: The y-component of the 3D Vector
36    z: float  #: The z-component of the 3D Vector
37
38    def __add__(self, rhs: Vector3D) -> Vector3D:
39        return Vector3D(
40            x=(self.x + rhs.x), y=(self.y + rhs.y), z=(self.z + rhs.z)
41        )
42
43    def __sub__(self, rhs: Vector3D) -> Vector3D:
44        return Vector3D(
45            x=(self.x - rhs.x), y=(self.y - rhs.y), z=(self.z - rhs.z)
46        )
47
48    def __mul__(vector, scalar: float) -> Vector3D:
49        return Vector3D(
50            x=(vector.x * scalar), y=(vector.y * scalar), z=(vector.z * scalar)
51        )
52
53    def __rmul__(vector, scalar: float) -> Vector3D:
54        return vector * scalar
55
56    def __neg__(vector):
57        return -1.0 * vector
58
59
60def translate(translate_amount: Vector3D) -> InvertibleFunction:
61    def f(vector: Vector3D) -> Vector3D:
62        return vector + translate_amount
63
64    def f_inv(vector: Vector3D) -> Vector3D:
65        return vector - translate_amount
66
67    return InvertibleFunction(f, f_inv)
68
69

Rotate Z

Rotate Z is the same rotate that we’ve used so far, but doesn’t affect the z component at all.

Rotate Z
src/modelviewprojection/mathutils3d.py
110def rotate_z(angle_in_radians: float) -> Vector3D:
111    fn = rotate2D(angle_in_radians)
112
113    def f(vector: Vector3D) -> Vector3D:
114        xy_on_xy: Vector2D = fn(Vector2D(x=vector.x, y=vector.y))
115        return Vector3D(x=xy_on_xy.x, y=xy_on_xy.y, z=vector.z)
116
117    def f_inv(vector: Vector3D) -> Vector3D:
118        xy_on_xy: Vector2D = inverse(fn)(Vector2D(x=vector.x, y=vector.y))
119        return Vector3D(x=xy_on_xy.x, y=xy_on_xy.y, z=vector.z)
120
121    return InvertibleFunction(f, f_inv)
122
123

Rotate X

Rotate X
src/modelviewprojection/mathutils3d.py
74def rotate_x(angle_in_radians: float) -> Vector3D:
75    fn = rotate2D(angle_in_radians)
76
77    def f(vector: Vector3D) -> Vector3D:
78        yz_on_xy: Vector2D = fn(Vector2D(x=vector.y, y=vector.z))
79        return Vector3D(x=vector.x, y=yz_on_xy.x, z=yz_on_xy.y)
80
81    def f_inv(vector: Vector3D) -> Vector3D:
82        yz_on_xy: Vector2D = inverse(fn)(Vector2D(x=vector.y, y=vector.z))
83        return Vector3D(x=vector.x, y=yz_on_xy.x, z=yz_on_xy.y)
84
85    return InvertibleFunction(f, f_inv)
86
87

Rotate Y

Rotate Y
src/modelviewprojection/mathutils3d.py
 92def rotate_y(angle_in_radians: float) -> Vector3D:
 93    fn = rotate2D(angle_in_radians)
 94
 95    def f(vector: Vector3D) -> Vector3D:
 96        zx_on_xy: Vector2D = fn(Vector2D(x=vector.z, y=vector.x))
 97        return Vector3D(x=zx_on_xy.y, y=vector.y, z=zx_on_xy.x)
 98
 99    def f_inv(vector: Vector3D) -> Vector3D:
100        zx_on_xy: Vector2D = inverse(fn)(Vector2D(x=vector.z, y=vector.x))
101        return Vector3D(x=zx_on_xy.y, y=vector.y, z=zx_on_xy.x)
102
103    return InvertibleFunction(f, f_inv)
104
105

Scale

src/modelviewprojection/mathutils3d.py
128def uniform_scale(scalar: float) -> InvertibleFunction:
129    def f(vector: Vector3D) -> Vector3D:
130        return vector * scalar
131
132    def f_inv(vector: Vector3D) -> Vector3D:
133        if scalar == 0:
134            raise ValueError("Not invertible.  Scaling factor cannot be zero.")
135
136        return vector / scalar
137
138    return InvertibleFunction(f, f_inv)
139
140

Code

The only new aspect of the code below is that the paddles have a z-coordinate of 0 in their modelspace.

src/modelviewprojection/demo14.py
122paddle1: Paddle = Paddle(
123    vertices=[
124        Vector3D(x=-1.0, y=-3.0, z=0.0),
125        Vector3D(x=1.0, y=-3.0, z=0.0),
126        Vector3D(x=1.0, y=3.0, z=0.0),
127        Vector3D(x=-1.0, y=3.0, z=0.0),
128    ],
129    color=Color3(r=0.578123, g=0.0, b=1.0),
130    position=Vector3D(x=-9.0, y=0.0, z=0.0),
131)
132
133paddle2: Paddle = Paddle(
134    vertices=[
135        Vector3D(x=-1.0, y=-3.0, z=0.0),
136        Vector3D(x=1.0, y=-3.0, z=0.0),
137        Vector3D(x=1.0, y=3.0, z=0.0),
138        Vector3D(x=-1.0, y=3.0, z=0.0),
139    ],
140    color=Color3(r=1.0, g=1.0, b=0.0),
141    position=Vector3D(x=9.0, y=0.0, z=0.0),
142)

The only new aspect of the square below is that the paddles have a z-coordinate of 0 in their modelspace. N.B that since we do a sequence transformations to the modelspace data to get to world-space coordinates, the X, Y, and Z coordinates are subject to be different.

src/modelviewprojection/demo14.py
147@dataclass
148class Camera:
149    position_ws: Vector3D = field(
150        default_factory=lambda: Vector3D(x=0.0, y=0.0, z=0.0)
151    )
152
153
154camera: Camera = Camera()

The camera now has a z-coordinate of 0 also.

src/modelviewprojection/demo14.py
158square: list[Vector3D] = [
159    Vector3D(x=-0.5, y=-0.5, z=0.0),
160    Vector3D(x=0.5, y=-0.5, z=0.0),
161    Vector3D(x=0.5, y=0.5, z=0.0),
162    Vector3D(x=-0.5, y=0.5, z=0.0),
163]

Event Loop

src/modelviewprojection/demo14.py
216while not glfw.window_should_close(window):
...
  • Draw Paddle 1

src/modelviewprojection/demo14.py
238    glColor3f(*astuple(paddle1.color))
239    glBegin(GL_QUADS)
240    for p1_v_ms in paddle1.vertices:
241        ms_to_ndc: InvertibleFunction[Vector3D] = compose(
242            # camera space to NDC
243            uniform_scale(1.0 / 10.0),
244            # world space to camera space
245            inverse(translate(camera.position_ws)),
246            # model space to world space
247            compose(translate(paddle1.position),
248                    rotate_z(paddle1.rotation)),
249        )
250
251        paddle1_vector_ndc: Vector3D = ms_to_ndc(p1_v_ms)
252        glVertex3f(paddle1_vector_ndc.x,
253                   paddle1_vector_ndc.y,
254                   paddle1_vector_ndc.z)
255    glEnd()

The square should not be visible when hidden behind the paddle1, as we do a translate by -1. But in running the demo, you see that the square is always drawn over the paddle.

  • Draw the Square

src/modelviewprojection/demo14.py
259    # draw square
260    glColor3f(0.0, 0.0, 1.0)
261    glBegin(GL_QUADS)
262    for ms in square:
263        ms_to_ndc: InvertibleFunction[Vector3D] = compose(
264            # camera space to NDC
265            uniform_scale(1.0 / 10.0),
266            # world space to camera space
267            inverse(translate(camera.position_ws)),
268            # model space to world space
269            compose(translate(paddle1.position),
270                    rotate_z(paddle1.rotation)),
271            # square space to paddle 1 space
272            compose(translate(Vector3D(x=0.0, y=0.0, z=-1.0)),
273                    rotate_z(rotation_around_paddle1),
274                    translate(Vector3D(x=2.0, y=0.0, z=0.0)),
275                    rotate_z(square_rotation)))
276        square_vector_ndc: Vector3D = ms_to_ndc(ms)
277        glVertex3f(square_vector_ndc.x,
278                   square_vector_ndc.y,
279                   square_vector_ndc.z)
280    glEnd()

This is because without depth buffering, the object drawn last clobbers the color of any previously drawn object at the pixel. Try moving the square drawing code to the beginning, and you will see that the square can be hidden behind the paddle.

  • Draw Paddle 2

src/modelviewprojection/demo14.py
284    # draw paddle 2
285    glColor3f(*astuple(paddle2.color))
286    glBegin(GL_QUADS)
287    for p2_v_ms in paddle2.vertices:
288        ms_to_ndc: InvertibleFunction[Vector3D] = compose(
289            # camera space to NDC
290            uniform_scale(1.0 / 10.0),
291            # world space to camera space
292            inverse(translate(camera.position_ws)),
293            # model space to world space
294            compose(translate(paddle2.position),
295                    rotate_z(paddle2.rotation)),
296        )
297
298        paddle2_vector_ndc: Vector3D = ms_to_ndc(p2_v_ms)
299        glVertex3f(paddle2_vector_ndc.x,
300                   paddle2_vector_ndc.y,
301                   paddle2_vector_ndc.z)
302    glEnd()

Added translate in 3D. Added scale in 3D. These are just like the 2D versions, just with the same process applied to the z axis.

They direction of the rotation is defined by the right hand rule.

https://en.wikipedia.org/wiki/Right-hand_rule